

Refactoring, Modernisation & Feature
Addition with Emphasis on GPU
Module

Point Cloud Library​ | Haritha Jayasinghe

Abstract

Despite being the go-to library for point cloud based computation, PCL can cause some
friction to users due to its old-fashioned and sometimes inconsistent API and the lack of
certain features. This proposal aims to introduce the following new features to the PCL
library;

● GPU implementation of Iterative Closest Point (ICP) algorithm
● Implementation of Fast Resampling of 3D Point Clouds via Graphs

As well as to​ ​refactor and modernize the library by means of;
● Introducing better type for point indices, thereby providing support for larger point

clouds
● Introducing a fluent API for algorithms
● Modernising the GPU Octree module to align with the it’s CPU counterpart

Applicant information:

Name : J.M. Haritha Anushanga Jayasinghe
Email : haritha.16@cse.mrt.ac.lk
University : University of Moratuwa, Sri Lanka
Major : Computer Science & Engineering
Graduation date : December 2020 (Expected)
GitHub profile : ​https://github.com/haritha-j
LinkedIn profile : ​https://www.linkedin.com/in/haritha-jayasinghe/
Address : 519/2, Bauddhaloka Mawatha, Colombo 8, Sri Lanka
Contact : +94 7104 15528

1

https://github.com/haritha-j
https://www.linkedin.com/in/haritha-jayasinghe/

Deliverables

● GPU-based ​Iterative Closest Point (ICP) algorithm implementation
● Graph based sampling filter implementation
● Migration to new point index type
● Fluent API support for existing algorithms
● Improved GPU Octree module

Table of Contents

Abstract 1

Applicant information: 1

Deliverables 2

Problem description 3
Type for point Indices 3
Implementation of Fast Resampling of 3D Point Clouds via Graphs 3
GPU Implementation of ICP algorithm 4
GPU Octree enhancement 4
Fluent API support for existing algorithms 5

Implementation Considerations 6
GPU Implementation of ICP algorithm 6
Implementation of Fast Resampling of 3D Point Clouds via Graphs 7
GPU Octree enhancement 8
Fluent API support for existing algorithms 9
Type for point Indices 10

Proposed Timeline 11

About me 12
Experience with PCL 13
Commitment 14

References 14

2

Problem description

Type for point Indices

As laser scans and LIDAR becomes more popular, the need arises for handling clouds with
a very large number of points. However many algorithms within the Point Cloud Library are
incapable of handling point clouds containing over 2 billion points due to their indices being
of the type int, which is capped at 2 billion[1]. Furthermore there currently isn’t one standard
type being used for indices, instead a variety of types such as int, long, unsigned_int and
others are being used. Therefore there is a pressing need to switch to a standard type for
indices.

Aside from this, there may be certain other areas in PCL which are also incapable of

handling larger point clouds due to various reasons, and such inconsistencies also need to
be addressed. This is described in more detail in the implementation section.

However due to the increased memory usage of types with larger capacity, the memory
efficiency of the library may be significantly reduced, not to mention further complications
with caching etc., which can be a serious concern considering the large variety of platforms
that PCL is used on. Thus the ideal solution would be to allow the user to choose which point
type to utilize at compile time, based on his intended use case and platform.

Implementation of Fast Resampling of 3D Point Clouds via Graphs

Point cloud resampling is another primary use case for users of PCL, and as such PCL
currently offers a number of sampling algorithms such as randomSampling and voxel grid,
and in fact one of my current pull requests is an implementation of a new farthest point
sampling filter. However each of these filters have distinct advantages as well as
disadvantages, from the nature of the output to time complexity, and as such it is crucial to
select the correct algorithm for a particular task. The proposed filter is based on the paper
Fast Resampling of 3D Point Clouds via Graphs[2] and proposes a method for resampling a
point cloud based on graphs, which not only reduces the computation time, but more
crucially, performs sampling in such a way that highlights the contours of the point cloud.

3

This makes it ideal for use cases such as contour detection, visualization, registration, and
shape modeling[2]. The following figure from the above paper demonstrates the comparison
between uniform resampling and the contour enhanced resampling provided by the
proposed algorithm.

GPU Implementation of ICP algorithm

Iterative Closest Point (ICP) is the most commonly used algorithm for point cloud
registration[3], which in turn is one of the primary features that are needed for when
performing computations on point clouds. Unfortunately the ICP algorithm is by design an
expensive operation with O(n​2​) time complexity with respect to the number of points in the
cloud[3]. However the nature of the ICP calculation makes it ideal for parallelization as
distance computations are performed for each and every point, with respect to the other
points in the cloud. The current CPU implementation is accelerated by the use of kd-trees
(where nearestKSearch() is utilized in the correspondence estimation step) to compute
distance between points, however, the existing GPU Octree module could be used instead in
a GPU implementation to provide an extremely fast implementation of the ICP algorithm.

GPU Octree enhancement

Octrees are specialized data structures with nodes that split into eight subchildren, and are a
widely used structure when working with point clouds, since they can be used to efficiently
perform many operations. The PCL GPU module is a crucial yet somewhat overlooked
component of PCL. The following figure shows a typical octree.

4

In many cases the GPU algorithms can execute tasks magnitudes faster than it’s CPU
counterpart, which can be crucial when working with large point clouds. Unfortunately the
GPU API is quite limited and often lacks much of the functionality offered in the equivalent
CPU algorithms. I aim to modify some of the more vital components of the GPU module to
bring it up to speed with the rest of the library, as well as to fix / improve some of the
functionality.

In particular there are certain features missing in the GPU based Octree implementation
such as the ability to calculate distances to points found using radiusSearch() or
nearestKSearch() functions, which are some of the primary use cases of the GPU module.
Furthermore RadiusSearch() provides incorrect results when search is performed over
multiple radii.

In addition the current static height implemented in the octree module also limits the potential
uses of the module. The use of void* pointers in “pointer to implementation” as opposed to
forward declaration and other inconsistencies are currently present in the module. Therefore
the Octree module is, on the whole, is in need of modification in multiple areas.

Fluent API support for existing algorithms

Switching to a fluent style API would not only make code cleaner and simpler, but allows
integration with ranges, one of the major features introduced in C++20[4], which could be
quite useful in future upgrades, allowing for more efficient operations on many use cases
(due to lazy execution). For instance, using ranges, different functions can be easily
combined using view. Consider the following example.[5]

std​::vector vec{​1​, ​2​, ​3​, ​4​, ​5​, ​6​};
auto​ v = vec | ​std​::​views​::reverse | ​std​::​views​::​drop​(​2​);

5

Here, multiple operations are combined together, which are only executed once an element
in the result is accessed. In order to move to this method of execution, it must be possible to
chain PCL functions together, which is exactly what a fluent API achieves.

While internal class structures would need to be modified, fluent API support can be added
without breaking the current user API.

Implementation Considerations

GPU Implementation of ICP algorithm

The idea behind the Iterative Closest point algorithm is to calculate a transformation that
best aligns one point cloud with another, by minimising the distance between the two clouds,
and most commonly the sum of square differences between the coordinates of matched
pairs is used as the distance metric.[6] The purpose of this task is to add a new ICP class to
the PCL GPU module, where the distance computations are performed parallely.

The simplest implementation of such an algorithm would seek to parallelize a traditional
distance computation[7]. However this would involve comparing each point in the target
cloud with each point in the source cloud, resulting in an O(n​2​) time complexity[3].
Fortunately the GPU octree module in PCL which provides a nearestKSearchBatch()
function for k = 1[8], which can be utilized to identify the nearest point parallely to compute
the distance metric. Unfortunately this method currently does not return the distance to the
point. Either an additional computation must be performed to calculate distance (which can
be parallelized) or the octree module itself must be modified to return distances to the points
as well as point indices. This is further discussed under the “GPU Octree enhancement”
heading below.

One drawback with this method is the GPU memory usage of uploading both the octree of

the target point cloud as well as the points of the source point clouds to the VRAM.
Fortunately it is possible to upload the points of the source cloud in batches which
significantly reduces the memory overhead. This allows comparison of full point clouds with
limited VRAM constraints, without the drawbacks of downsampling (Typically downsampling
reduces the likelihood of finding ‘the best match’ for a given point). However benchmarking
is required to ascertain if the increase in accuracy can justify the time penalty of repeatedly
loading the entire cloud. It is crucial to build the octree from the target cloud since the source
cloud will be transformed in each iteration, and we do not wish to rebuild the octree in each
iteration.

6

Once a transformation is identified, the application of the transformation may also be
accelerated by utilizing CUDA programming, since it is essentially an application of matrix
multiplication over the point set.

Additional performance enhancements may be gained by performing octree based
subsampling to reduce point densities, implementing a caching policy etc.[6], however the
practical viability of such methods must be determined by experimentation. Furthermore
additional enhancements such as the removal of outliers may also be required to prevent
issues due to local minima in the distance metric[6]. A new test class similar to that of the
CPU ICP implementation must also be developed, where a point cloud is manually created,
which allows checking the locations of the points of the resultant cloud using an assertion
such as EXPECT_NEAR.

Implementation of Fast Resampling of 3D Point Clouds via Graphs

The proposed resampling method would be implemented as a new class in the fiters
module, which would most probably be built on top of the proposed samplingFilter base
class. A graph must be constructed from the point cloud, by encoding local geometry
information of the cloud using an adjacency matrix[9]. In simple terms the edgeweight
between two points represents a distance similar to euclidean distance between the two
points, given that the distance between them is below a certain threshold[2]. Due to the large
memory usage of this approach, sparse matrices must be utilized for point representation.
(Fortunately, due to the fact that an edge is recorded only if the distance between the two
points is below a certain threshold, the space complexity becomes On(n) as opposed to
O(n​2​), and thus, sparse matrices would be ideal for this representation). In terms of
computational complexity, octree based methods such as radiusSearch() can be utilized to
identify distances to all points below the threshold in O(n) time as well.

Next a graph filter must be constructed to extract a sample of points. A graph filter is
essentially an algorithm that applies a function to an input graph to produce an output graph.
Similar to image processing, where a high pass filter can be utilized to extract edges and
contours in a 2D image, a similar high pass filter can be applied to a graph to identify
features such as contours in a 3D point cloud[2]. Such a filter can be utilized to identify
points that ‘break the trend’ of the surrounding points, which indicates a contour. Application
of the actual filter is simply a matrix multiplication operation on the adjacency matrix
described above, similar to how a high pass filter is applied to a 2D image’s pixels.

An additional test class must also be developed for testing the functionality of the new
downsampling algorithm. As with other filters such as the farthestSamplingFilter that I’m
currently implementing, a custom point cloud can be created with point clusters that
represent contours in the cloud. Then, it can be asserted whether the results of the filter
retain a significant amount of points (depending on the sampling size) that belong to the
contours.

7

GPU Octree enhancement

As mentioned above there are a few shortcomings in the current GPU Octree module.

● Lack of the ability to identify the distance to the points detected using either
the radiusSearch(), nearestKSearchBatch() or approxNearestSearch()
methods[8]

Upon initial inspection, it appears that this might be an implementation decision taken due to
the way an octree is currently represented in GPU memory, using morton codes[10][11],
which may include an additional calculation for distance computation. However, given that
many use cases rely on this distance (for instance in the ICP algorithm mentioned above, or
when performing change detection across two point clouds). In one of my personal
workloads, I’ve been forced to perform radiusSearch() with multiple thresholds in order to get
a rough estimate of point to point distance. Thus, I believe it would be beneficial to have the
ability to measure point distances, and in fact the CPU implementation already offers this
functionality.

The distance computation should be somewhat straightforward, since the morton code for a
given point encodes its position relative to the centroid of the voxel[10], which allows us to
calculate it’s distance with the query point by simple addition.

● radiusSearch() on multiple radii thresholds is broken and provides extremely
inconsistent results

This issue is documented in #3583 [12]. This is due to a flaw in the function used to
broadcast the square of the radius in the CUDA radiusSearch() implementation, which
results in the addition of points to the results at random. This function needs to be modified
to correctly calculate distance based on the correct square value of the radius threshold.

● GPU octree module does not allow for selection of voxel size

However, allowing the user to select voxel size allows the user to select the optimum octree
size to suit each use case. For instance an octree with smaller nodes would be better
optimized to perform kNearestSearch() for a densely packed point cloud, while larger voxel
sizes may be more suited for less dense clouds [13]. Therefore I also intend to investigate
the possibility of allowing the user to select the number of octree levels or the voxel size of
the leaves, which would probably involve modifying morton source code, where currently the
number of levels is set to 10. The existing tests must be modified to test the additional
functionality.

8

Fluent API support for existing algorithms

The implementation of a fluent API is in itself a rather simple task, and it can be achieved by
modifying the return values of methods within classes. In most cases it might also be
necessary to introduce an additional terminating method. The first step would be to conduct
a review of the existing classes to identify the classes where having a fluent API would
make sense to a user.

For instance, the use of classes in the filter module could be simplified using a fluent
interface, where each of the filter specific parameters as well as the input and output
destinations that must be set prior to filtering could be chained together. Finally, a
terminating method may also be added[14].

One major concern is the fact that subclasses would be required to override all fluent API
based methods from their superclass[15][16]. Consider the following simplified example,
where parent class methods are overridden.

class​ ​FilterIndices​ {
 public FilterIndices ​setNegative​() { ... }
}

class​ ​CropBox​ ​: ​public​ ​FilterIndices​{
public CropBox ​setNegative​() { ​FilterIndices​::​setNegative​(); ​return ​this​;

} // The setNegative() function needs to be overridden to return a CropBox

object.

 public CropBox ​setRotation​(​const​ ​Eigen​::Vector3f &rotation) { ... }
}

CropBox crop = ​new ​CropBox​().​setNegative​().​setRotation​(rotation); // this

only works because setNegative() was overridden.

A different approach would be to simply implement a fluent wrapper around each class[15].
This approach has the advantage of not having to modify existing classes and being able to
provide ‘fluent-style’ names for fluent methods, but would result in boilerplate code. As an
example consider the following snippet from a fluent wrapper for the CropBox class, which
provides a fluent API for setting rotation.

class​ ​FluentCropBox​ : ​private​ ​CropBox​ {
 ​public:
 ​CropBox​() :​ ​CropBox​() {}
 ​FleuntCropBox ​&​withRotation​() {
 ​ ​setRotation​ ​(​const​ ​Eigen​::Vector3f &rotation​);
 ​ ​return​ *​this​;
 }

9

Since there is a large number of classes to be modified across a multitude of modules, it
would make sense to roll out the fluent interface module-wise. Along with each module, the
relevant test methods should also be modified to ensure correct functionality of the new API.

Type for point Indices

The first consideration would be to decide which options would be offered to the user during
compilation, to utilize as the type for indices, as well as to identify the default approach to
take. The simplest method would be to provide a binary choice between large and small
indices in cMake, with a ‘PCL_LARGE_INDICES’ option. By default, it makes sense to use
the smaller indices, as clouds with points above 2 billion are currently more of a niche use
case rather than the norm. Additional options for smaller indices can also be offered, which
may perhaps be required for smooth operation in resource constrained real time
environments. Whichever option selected by the user would be assigned as ‘pcl::index_t’.

An additional option may be offered to switch to the use of unsigned indices, which would
double the capacity of each type, and allow the current 32bit indices to support 4 billion
points[1].

Once the above factors are decided, the current ‘std::vector<int>’ objects must be replaced
with ‘std::vector<pcl::index_t>’ and current uses of size_t must be switched to the new
‘index_t’. There is widespread use of <int> vectors as indices across most modules of PCL,
which must all be updated. All occurrences of the use of other types such as ‘int’ would need
to be updated across the public API, since many functions currently require indices in the
form of ‘int’ which would unfortunately cause significant breakage in the user API.

Finally it would be wise to inspect popular existing libraries which may have other inherent
limitations that may break intended functionality when using extremely large point clouds.
For instance the random sampling module currently uses the older ‘rand’ random number
generator (This is an issue which is currently being addressed). Apart from the other well
documented drawbacks of the rand module, the seed used in the generator is limited by the
limits of ​RAND_MAX[17], which is capped at around 2 billion for most systems​, and therefore, it
would no longer be random for clouds with over 2 billion points. There may be other modules
with such restrictions which would need to be modified to allow proper support for larger
indices.

10

Proposed Timeline

Week Duration Task

1 June 1 Junee 7 ● Background research and class design for fast
resampling algorithm implementation

● Research on GPU Octree and morton code
representations

2 June 8 June 14 ● Implementation of distance measurements for
octree based search methods

3 June 15 June 21 ● Creation of a graph representation of points for
resampling

● Providing support for user defined octree levels

4 June 22 June 28 ● Providing a high pass filter for point resampling
● Apply fixes to the GPU radiusSearch() method

5 June 29 July 5 ● Evaluation of classes that are suitable for a
fluent style API

● Evaluation 01

6 July 6 July 12 ● Implementation of tests for the high pass filter
● Class design for GPU ICP registration class

7 July 13 July 19 ● Application of fluent style API for identified
classes

8 July 20 July 26 ● Distance metric computations for ICP
registration

● CMake modifications for supporting large point
indices

9 July 27 August 2 ● Implementing tests for fluent style API
● Evaluation 02

10 August 3 August 9 ● Implement changes to indices types across the
library

● Evaluate additional changes required for

11

supporting large indices and make necessary
changes

11 August 10 August 16 ● Implement iterative computation of distance
metric and application of required
transformations

12 August 17 August 23 ● Provide additional enhancements to ICP
algorithm for increased performance and for
avoiding local minima.

● Implement tests for GPU ICP algorithm

13 August 24 August 30 ● Finalize documentation and tests

 August 31 Conclusion

About me

I’m a 4th year undergraduate studying Computer Science & Engineering at the University of
Moratuwa, Sri Lanka. I’m passionate about making an impact through creative problem
solving, and I took up programming since it’s a great tool in achieving that goal. My spare
time is mostly spent on reading, cycling and some gaming.

I have experience working with c++, python, java, javascript and golang languages in a
variety of areas from deep learning to video decoding. Furthermore I’m currently studying
concurrent programming at my university, including CUDA programming.

Last year I completed a 6 month internship as a student researcher at the University of
Sydney, where I worked on two primary projects. One of these was regarding differentiating
similar items using pointclouds to identify privacy leakage in mixed reality devices, where I
worked extensively with point clouds. This project involved both point cloud manipulation
using PCL as well as using custom neural network architectures based on pointNet.

12

Experience with PCL

I have been working extensively with PCL and point clouds for around 2 years on a few
projects. Aside from the research project mentioned above, these also include;

● Identification of components of Railway tracks from aerial laser scans
● Comparison of scans of buildings and design files to identify imperfections that arise

during construction

While working on the above projects, I’ve become quite familiar with PCL, and in particular
modules such as octree/kdtree, registration, filters, visualization, sample consensus and
GPU.

Through my experience with the above projects I have gained a deep appreciation for all the
functionality provided by PCL, as well as become familiar with some of its drawbacks and
caveats. Therefore I was delighted to learn that PCL was participating in GSoC this year,
and was very eager to participate and contribute to the library. In fact, many of the
enhancements that this project aims to build were based on pain points I experienced during
the above projects.

In terms of contributions, I have linked a couple of pull requests I have submitted to PCL
below.

● Add farthest point sampling filter
https://github.com/PointCloudLibrary/pcl/pull/3723
This PR implements a new filter to perform farthest point sampling in O(n​2​) time,
utilizing euclidean distance.

● Add point size check to savePCDFileBinary method

https://github.com/PointCloudLibrary/pcl/pull/3775
This PR provides a fix to a bug in the file writer where the output file can become
corrupt due to the height*width value being different to the number of points in the
point cloud.

I have also linked below an example contribution for another open source project -
Centrifuge, which is a blockchain based platform written in golang that powers decentralized
financial transactions. My contribution was focused on implementing test cases to assess
functionality for edge cases.
https://github.com/centrifuge/go-centrifuge/commit/a6d396c1399690d718af83e251f0b290b4
1c25a7

13

https://github.com/PointCloudLibrary/pcl/pull/3723
https://github.com/PointCloudLibrary/pcl/pull/3775
https://github.com/centrifuge/go-centrifuge/commit/a6d396c1399690d718af83e251f0b290b41c25a7
https://github.com/centrifuge/go-centrifuge/commit/a6d396c1399690d718af83e251f0b290b41c25a7

Commitment

As per my current schedule, I would be having my vacation during the GSoC time period
except for about 2 weeks (from the beginning of June to the middle of August). During this
time I can commit 6+ hours of work per day. Unfortunately the current schedule may quite
possibly change because of disruptions to the academic schedule due to the Covid-19
pandemic. We’re currently carrying on work online, and as of now, it seems like the entire
schedule would be delayed by two weeks.

References

1. Summary of C/C++ integer rules, Nayuki -
https://www.nayuki.io/page/summary-of-c-cpp-integer-rules

2. Fast Resampling of 3D Point Clouds via Graphs, Siheng Cheng et al. -
https://arxiv.org/pdf/1702.06397.pdf

3. Notes on Iterative Closest Point Algorithm, Jana Procházková and Dalibor Martišek -
https://www.researchgate.net/publication/324500004_Notes_on_Iterative_Closest_P
oint_Algorithm

4. Standard Ranges, Eric Niebler - ​http://ericniebler.com/2018/12/05/standard-ranges/

5. A beginner's guide to C++ Ranges and Views, Hannes Hauswedell -
https://hannes.hauswedell.net/post/2019/11/30/range_intro/

6. Iterative Closest Point (ICP) Algorithm, Yaraslav Halchenko -
http://www.onerussian.com/classes/cis780/icp-slides.pdf

7. GPU-Accelerated Nearest Neighbor Search for 3D Registration, Deyuan Qiu et al. -
https://www.researchgate.net/publication/221410064_GPU-Accelerated_Nearest_Nei
ghbor_Search_for_3D_Registration

8. GPU octree documentaiton -
http://docs.pointclouds.org/trunk/classpcl_1_1gpu_1_1_octree.html

9. point cloud processing using linear algebra and graph theory, Tim Volodine -
http://www.cs.kuleuven.be/publicaties/doctoraten/tw/TW2007_05.pdf

14

https://www.nayuki.io/page/summary-of-c-cpp-integer-rules
https://arxiv.org/pdf/1702.06397.pdf
https://www.researchgate.net/publication/324500004_Notes_on_Iterative_Closest_Point_Algorithm
https://www.researchgate.net/publication/324500004_Notes_on_Iterative_Closest_Point_Algorithm
http://ericniebler.com/2018/12/05/standard-ranges/
https://hannes.hauswedell.net/post/2019/11/30/range_intro/
http://www.onerussian.com/classes/cis780/icp-slides.pdf
https://www.researchgate.net/publication/221410064_GPU-Accelerated_Nearest_Neighbor_Search_for_3D_Registration
https://www.researchgate.net/publication/221410064_GPU-Accelerated_Nearest_Neighbor_Search_for_3D_Registration
http://docs.pointclouds.org/trunk/classpcl_1_1gpu_1_1_octree.html
http://www.cs.kuleuven.be/publicaties/doctoraten/tw/TW2007_05.pdf

10. Thinking Parallel, Part III: Tree Construction on the GPU, Tero Karras -
https://devblogs.nvidia.com/thinking-parallel-part-iii-tree-construction-gpu/

11. Advanced Octrees 2: node representations, David Geier -
https://geidav.wordpress.com/2014/08/18/advanced-octrees-2-node-representations/

12. Inaccurate results with gpu octree search example -
https://github.com/PointCloudLibrary/pcl/issues/3583

13. Efficient Processing of Large 3D Point Clouds, Jan Elseberg, Dorit Borrmann,
Andreas Nuchter -
https://robotik.informatik.uni-wuerzburg.de/telematics/download/icat2011_1.pdf

14. Method Chaining, Fluent Interfaces, and the Finishing Problem, Dave Glick -
https://daveaglick.com/posts/method-chaining-fluent-interfaces-and-the-finishing-prob
lem

15. Fluent Interface - ​https://en.wikipedia.org/wiki/Fluent_interface

16. Fluent Interfaces are Evil, Marco Pivetta -
https://ocramius.github.io/blog/fluent-interfaces-are-evil/

17. USING THE C OR C++ rand() FUNCTION, David Deley -
http://daviddeley.com/random/crandom.htm​l

15

https://devblogs.nvidia.com/thinking-parallel-part-iii-tree-construction-gpu/
https://geidav.wordpress.com/2014/08/18/advanced-octrees-2-node-representations/
https://github.com/PointCloudLibrary/pcl/issues/3583
https://robotik.informatik.uni-wuerzburg.de/telematics/download/icat2011_1.pdf
https://daveaglick.com/posts/method-chaining-fluent-interfaces-and-the-finishing-problem
https://daveaglick.com/posts/method-chaining-fluent-interfaces-and-the-finishing-problem
https://en.wikipedia.org/wiki/Fluent_interface
https://ocramius.github.io/blog/fluent-interfaces-are-evil/
http://daviddeley.com/random/crandom.htm

