
Journal of Mathematical Imaging and Vision manuscript No.
(will be inserted by the editor)

CvxPnPL: A Unified Convex Solution to the Absolute Pose
Estimation Problem from Point and Line Correspondences

Sérgio Agostinho · João Gomes · Alessio Del Bue

Received: date / Accepted: date

Abstract We present a novel certifiable convex method

to estimate 3D pose from mixed combinations of 2D-

3D point and line correspondences, the Perspective-n-

Points-and-Lines problem (PnPL). We merge the con-

tributions of each point and line into a unified Quadrati-

cally Constrained Quadratic Problem (QCQP) and then

relax it into a Semidefinite Program (SDP) through

Shor’s relaxation. In this way, we jointly handle mixed

configurations of points and lines in a single compu-

tational framework. Furthermore, the proposed relax-

ation allows us to recover a finite number of solutions

under ambiguous configurations. In such cases, the 3D

pose candidates are found by further enforcing geo-

metric constraints on the solution space and then re-

trieving such poses from the intersections of multiple

quadrics. Experiments provide results in line with the
best performing state of the art methods while provid-

ing the flexibility of solving for an arbitrary number

of points and lines, while the convex formulation pro-

vides a framework for a posteriori validation of globally

optimal solutions. 1

Keywords Absolute Pose Estimation · Point and Line

Correspondences · Convex Optimization · Semidefinite

Relaxation

S. Agostinho and J. Gomes
Instituto de Sistemas e Robótica/LARSys
Instituto Superior Técnico, Universidade de Lisboa
Portugal
E-mail: {sergio.agostinho@,jpg@isr.}tecnico.ulisboa.pt

A. Del Bue
Fondazione Istituto Italiano di Tecnologia
Genoa, Italy
E-mail: alessio.delbue@iit.it

1 The code implementation of CvxPnPL is available at
https://github.com/SergioRAgostinho/cvxpnpl.

1 Introduction

The problem of estimating the relative 3D pose between

an object and a camera, given a number of 2D-3D cor-

respondences, is well studied and it enabled a number

of very successful applications in Robotics and Aug-

mented Reality (AR) [26]. The absolute pose problem

is challenging because under certain geometric config-

urations of 2D-3D points and/or lines, there can ex-

ist more than a unique valid 3D pose. In such cases,

these multiple poses need to be retrieved and it is up

to the user to rely on external information to disam-

biguate which one is correct. As such, it is understand-

able that few attempts were made to tackle the problem

through convex optimization. A convex problem can be

unbounded and have no global optimum, it can have
a single global optimum as is often the case, or it can

have infinite global optima e.g, the entire domain of a

constant function is its argmin. The existence of a finite

countable number of solutions implies that the problem

is non-convex. However, we show that through a relax-

ation of the original problem, it is possible to address

it with convex optimization and still retrieve multiple

solution. The method makes use of point and line cor-

respondences, to leverage collinearity and coplanarity

constraints as in [32,48]. We formulate our optimization

problem as a Quadratically Constrained Quadratic Pro-

gram (QCQP), which we further relax into a Semidef-

inite Program (SDP) using Shor’s relaxation [28]. We

experimentally verify that our relaxation is tight, has

no duality gap and is certifiably optimal. Our method

is the first convex formulation to solve the Perspective-

n-Points-and-Lines (PnPL) problem from 2D-3D corre-

spondences, being able to recover up to 4 ambiguous

poses. We modified the formulation from Zhou et al.

[48] to fully exploit all geometric information provided

https://github.com/SergioRAgostinho/cvxpnpl

2 Sérgio Agostinho et al.

by the point and line correspondences and, lastly, we

present a modification to Kukelova’s et al. [22] E3Q3

method to handle the further constrained case of the

intersection of 6 quadrics with 3 unknowns. Our ex-

perimental results are in line with the most accurate

state-of-the-art methods, with the benefit of providing

guarantees of global optimality.

2 Related Work

The literature on pose estimation from 2D-3D corre-

spondences is extensive and a comprehensive review is

out of scope for this paper. Our method is designed for a

central camera and non-minimal combinations of points

and lines, despite being able to handle the minimal or

planar points-only cases. For this reason we restrict the

review to the following sub-topics.

Perspective-n-Points. The first approach to effec-

tively estimate pose from 2D-3D correspondences was

the DLT [1]. The DLT recovers both the camera in-

trinsics and pose, and as such, tends to achieve lower

accuracy when compared to methods which make use

of the intrinsic information of the camera. However, it

could scale to an arbitrary number of correspondences

with only a linear increase in computational complex-

ity. Subsequent approaches to solve the minimal [11,14]

and non-minimal [2] problems all suffered from poor

scaling for a large number of points. Schweighofer and

Pinz [37] proposed an O(n) convex method to solve the

PnP problem for general cameras: they formulated a

SDP problem around a quaternion rotation and their

method handled the planar case separately. EPnP [23]

is also an O(n) method that relies on a parametriza-

tion based on four control points and a linearization

step to simplify the optimization problem. Subsequent

works avoided the linearization step and tackled the

polynomial problem directly [16,46], some targeting ro-

bustness and outlier rejection [24,13], others proposing

a formulation for universal cameras [20]. Among all,

OPnP [46] shows the most accurate results for the cen-

tral camera case.

Perspective-n-Lines. The first works addressed

the PnL problem in the minimal 3 lines case [10,12].

The minimal problem was revisited recently by Xu et

al. [42], which observed that there could be a maximum

of eight possible solutions. Ansar and Daniilidis [2] pro-

posed one of the first PnL methods, but it struggles to

scale with large number of correspondences. The same

year, Hartley and Zisserman [15] proposed an adapta-

tion of DLT for lines. Mirzae and Roumelioutis [27] es-

timated the camera rotation matrix from a system of

polynomial equations whose solution is extracted from

eigen-decomposition. Přibyl et al. [30,31] proposed a

DLT inspired method which makes use of Plücker line

parameterization to formulate the problem as a system

of linear equations. Zhang et al. [45] proposed a robust

method to estimate the pose from multiple line triplets.

Lastly, Zhou et al. [47] addressed the PnL problem in

terms of two algebraic distances to approximate Geo-

metric distance. The method skips the use of a Gröbner

basis solver by using the first order optimality condi-

tions of its polynomial equation with a more stable hid-

den variable method.

Perspective-n-Points-and-Lines. The literature

for mixed combinations of points and lines is briefer

compared to the previous two modalities. The works of

Ramaligan et al. [32] and Zhou et al. [48] address the

minimal cases, while for non-minimal cases the DLT

approach [15] can naturally be adapted to take con-

tribution from points and lines. Subsequently, Kuang

and Åström [21] proposed a method to jointly estimate

the pose and focal length from points, lines and points

with direction. Vakhitov et al. [40] proposed an adap-

tation to EPnP and OPnP and extended their support

to lines.

Convex Relaxations on Rotation Matrices.

Saunderson et al. [35] provided an in-depth analysis on

the properties of the convex hull enclosing rotation ma-

trices, and the works [34,18,7,8,33,43] showed that de-

spite the non-convex nature of the SO(3) group, there

exist successful relaxation strategies. Carlone et al. [9]

solved the planar pose graph optimization problem re-

sorting to an SDP relaxation. This relaxation is mostly

tight and in the cases where it is not, it still provided a

suboptimal reduced search space to extract a meaning-

ful solutions. This work was later extended to the full

3D case by Rosen et al [33]. Our method draws inspi-

ration from the recent work of Briales et al. [7,8] that

enforce the orthogonal and the determinant constraints

of a rotation matrix using only quadratic constraints;

apply a QCQP relaxation; and achieve remarkable re-

sults for non-minimal 3D registration and relative pose

determination between two views.

3 A Unified Formulation for Point and Line

Correspondences

We wish to formulate an optimization problem, with

respect to the 3D pose of a model, that combines ge-

ometric information from both points and lines. To do

so, we employ the collinear and coplanarity constraints

introduced by Ramalingam et al. [32]. Let us consider

pi as a 3D point from a set of n points, and the tuple

(lp1j , lp2j) as two points parametrizing a 3D line from

a set of m lines, defined in the object’s reference frame.

CvxPnPL 3

eOx

eOy

eOz

eCx

eCy

eCz

pO
i

bC
i

lp
O
1j

lp
O
2j

ln
C
j

ln
C
j

Πj

Fig. 1: Example of 2D-3D correspondences from a single point and line. Elements belonging to point corre-

spondences are represented in red and elements belonging to line correspondences are represented in blue. The

superscripts O and C denote that the element belongs to the object and camera’s reference frames, respectively.

Best viewed in color.

Refer to Figure 1 for a visualization of the problem ge-

ometry. The 3D model’s pose with respect to the cam-

era is given by the rotation matrix R and the translation

vector t ∈ R3. We also define r as the vectorization of

R, such that r = vec(R).

Point Correspondences. The projection of a 3D

point pi onto the image plane will intersect a given

pixel. A pixel in the image plane can be represented

in homogeneous coordinates as [ui, vi, 1]
⊤. Consider a

camera whose intrinsic parameters are known and de-

scribed by matrix K. The corresponding bearing vec-

tor/ray for this pixel is calculated as

b⃗i = K−1

ui

vi
1

 , (1)

determined up to scale factor. Both pi and bi are neces-

sarily collinear, allowing us to enforce bi × (Rpi + t) =

0, where the operator × represents the cross product.

Then, let us write ⌊bi⌋× (Rpi + t) = 0, employing the

equivalent skew symmetric matrix representation ⌊b⌋×
for the cross product. The matrix ⌊b⌋× has rank 2, so

despite each point correspondence contributing 3 equa-

tions, only 2 of them are linearly independent. Stack-

ing the contributions from all n points and rearranging

terms yields Cpr+ Npt = 0, where Cp and Np are 3n× 9

and 3n× 3 matrices, respectively.2

Line Correspondences. Any 3D line that is not

collinear with the origin of the camera’s reference frame,

forms a unique plane Πj with it (see Figure 1). We

denote by lnj the normal of Πj . The line constraints

are built from the fact that, in the camera’s space, both

lp1j and lp2j belong to Πj and are therefore orthogonal

to lnj , satisfying

lnj · (Rlpij + t) = 0 : i = 1, 2. (2)

Each line correspondence contributes two linearly in-

dependent equations, and upon stacking, it forms the

system

CLr+ NLt = 0, (3)

where CL is a 2m × 9 matrix, and NL is 2m × 3.2 Con-

sider blj1 and blj2, the bearing vectors associated with

two distinct points sampled from the 2D line projec-

tion. The normal lnj can be recovered from their cross

product lnj = ⌊blj1⌋×blj2.

2 The full derivation of this expression can be found in the
Appendix.

4 Sérgio Agostinho et al.

3.1 Composing the Homogeneous System

Stacking together the contributions from points and

lines requires us to further define the matrices as:

C =

[
Cp
CL

]
, N =

[
Np
NL

]
. (4)

Both C and N are composed of 3n+ 2m rows, of which

2n + 2m are linearly independent. It is a known lin-

ear algebra result that, given an optimal r̂, the optimal

unconstrained solution t̂ to the overdetermined system

Cr+ Nt = 0, (5)

is given by t̂ = −(NT N)−1N⊤Cr̂. Substituting back into

Eq. (5), allows us to write the complete system as Ar =

0, with

A = (I3n+2m − N(N⊤N)−1N⊤)C, (6)

where A is a (3n + 2m) × 9 matrix and I3n+m is the

identity matrix of size 3n+ 2m. The second row block

of A is the residual of the projection of C onto the column

space of N.

4 Convex Formulation

The formulation in Eq. (5) does not consider the spe-

cific structure of r = vec(R). Proper rotation matrices

are orthogonal and satisfy det(R) = +1. While the or-

thogonality is a quadratic constraint, the determinant

is cubic. However, it was show in [39], that enforcing

the right-hand convention in the columns or rows, en-

sures a positive determinant, allowing us to express this

inherently cubic constraint in an equivalent quadratic

form. As such, we formulate our problem as:

min
r

∥Ar∥2 (7a)

s. t. R⊤R = I3 (7b)

RR⊤ = I3 (7c)

R(i) × R(j) = R(k), (7d)

with (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} and R(i) de-

noting the i-th column of R. While the inclusion of Eq.

(7c) might seem redundant, we show in Section 7.1 that

it helps the solver to converge faster and achieve esti-

mates with lower error. The previous problem can be

written in a canonical form given by:2

min
r̃

r̃T Q0r̃ (8a)

s. t. r̃T Qir̃ = 0 : i ∈ {1, . . . , 21} (8b)

r̃10 = 1, (8c)

where r̃ is the homogeneous vector r̃ = [r⊤1]⊤ of size

10. It is also important to highlight that Q0 and Qi be-

long to the subspace of symmetric matrices S10. The
constraints in Eq. (8b) are non-convex, so in order to

overcome this limitation, we relax the problem into a

SDP employing Shor’s relaxation [28,38]. This relax-

ation exploits the trace identity tr(r̃⊤Qr̃) = tr(Qr̃r̃⊤),

allowing to rewrite the QCQP as:

min
Z

tr(Q0Z) (9a)

s. t. tr(QiZ) = 0 : i ∈ {1, . . . , 21} (9b)

Z ≽ 0 (9c)

Z10,10 = 1, (9d)

where Z = r̃r̃⊤ is a 10× 10 matrix with rank 1 by con-

struction. The rank constraint is not convex and there-

fore it is dropped, relaxing the original problem. One

might wonder if it is worth to move from the original

Problem (7) with nine unknowns to one (9) with 100

unknowns. This line of thinking overlooks the fact that

(7) is not convex and as such, common optimization

strategies are sensitive to initialization and cannot pro-

vide guarantees with respect to the optimality of the so-

lutions returned, contrary to what is done in Section 6.

As it turns out, this relaxation plays an important role

when handling situations in which there are multiple

solutions, a topic we further expand in Section 5. Prob-

lem (9) is part of the family of convex cone programs

and we resort to the Splitting Conic Solver (SCS) [29]

(cf. Appendix E) to compute the optimal estimate Ẑ.

5 Rotation Recovery

We can reconstruct the optimal r̃∗k from:

r̃ =

K∑
k=1

αkvλk
(10)

r̃10 = 1, (11)

whereK denotes the rank of Ẑ and vλk
are the eigenvec-

tors associated with non-null eigenvalues. These eigen-

vectors are not vectorized rotations themselves, but they

span a linear space which the solutions inhabit. While

dealing with rank 1 is relatively straightforward, rank

2 and above requires enforcing geometric constraints

as in Eqs. (7b), (7c) and (7d) to the solution space in

order to retrieve admissible solutions. While it is not

optimal to have different procedures dependent on the

numerical observation ofK, tackling each rank with the

its own dedicated procedure allows solving the simpler

cases quicker and with less computational resources, re-

serving the most computationally expensive procedures

for the cases that really need it.

CvxPnPL 5

Back-substituting the linear constraint in Eq. (11)

allows removing one of the unknowns, resulting in an

expression of the form:

r̃ =

K−1∑
k=1

α′
kv

′
k + v′

0 (12)

[
r

1

]
=

K−1∑
k=1

α′
k

[
...

0

]
+

[
...

1

]
. (13)

Imposing the rotation matrix constraints here results

in a system of 21 quadratic polynomial equations with

K − 1 unknowns. This paper provides solutions up to

rank 4, meaning that we are able to tackle points-only

configurations with 3 or more points, but for lines-only

or mixed configurations of points and lines, we require

at least 4 elements to get a solution. The next para-

graphs, with more details in the supplemental material,

describe the procedure to recover such solutions.

Rank 1.When dealing with rank 1 matrix Ẑ, we are

in a situation where the relaxation is tight. The opti-

mal r̂ can be recovered from the eigenvector associated

with the largest eigenvalue as vλmax
= a

[
r̂⊤ 1

]⊤
. In

practice, it is also advisable to reproject this solution

to the orthogonal matrix space, so after applying vec−1,

we decompose it using SVD and retrieve R̂ as:

R′ = vec−1(r̂) (14)

UDV⊤ = svd(R′) (15)

R̂ = UV⊤. (16)

Rank 2. Refer to Eq. (12) with K = 2. After en-

forcing the linear constraint on the last element of r̃, we

have a single unknown, designated as a. After enforc-

ing the quadratic constraints on the rotation we end up

with a system of equations of the form G
[
a2 a 1

]⊤
= 0,2

where G ∈ R21×3. In our experiments, we observed that

G has rank 1. Finding the roots of a single quadratic

equation will produce up to two solutions, in line with

the hypothesis that the rank is indicative of the num-

ber of ambiguous solutions. We retrieve both values

of a from the row-wise average of G, denoted as ḡ⊤,

by finding the roots of the second order polynomial

ḡ1a
2 + ḡ2a+ ḡ3 = 0.

Rank 3. The rank 3 case is composed of the two un-

knowns α′
1 and α′

2 that we shall refer as a and b. After

the enforcing the rotation’s quadratic constrains we ob-

tain a system of equations of the form G
[
a2 b2 ab a b 1

]⊤
=

0, with G ∈ R21×6. In our experiments, we observed that

matrix G has rank 3, indicating the presence of only 3

linearly independent equations. Consider the column-

wise block representation of G such that G =
[
GL GR

]
,

with matrices GL ∈ R21×3 and GR ∈ R21×3. Given the

rank 3 of G and resorting to the left pseudo inverse, we

can writea2b2
ab

 = −(GL
⊤GL)

−1GL
⊤GR︸ ︷︷ ︸

D∈R3×3

ab
1

 . (17)

We pick rows 1 and 3 and after rearranging and substi-

tuting some terms, we end with the following expres-

sions:

a3 − (d11 + d32)a
2 + (d11 ∗ d32 − d12 ∗ d31 − d13)a

+ d13 ∗ d32 − d12 ∗ d33 = 0 (18)

b =
1

d12
(a2 − d11a− d13), (19)

where dij corresponds to the element in the i-th row

and j-th column of matrix D. Extracting the solution

amounts to finding the roots of a 3th degree polyno-

mial, yielding 3 solutions for a. Given a value for a, we

can find the corresponding b through Eq. (19) and with

both, retrieve the optimal r̃.

Rank 4. In the rank 4 case, we will designate the

three unknown α′
1, α

′
2 and α3 by the letters a, b and

c. After enforcing the available constraints we obtain

the following system G
[
a2 b2 c2 ab ac bc a b c 1

]⊤
= 0,

where G ∈ R21×10. In our experiments, we empirically

observed that G is composed of 6 linearly independent

equations. Similar to rank 3, we consider the column-

wise block representation of G such that G =
[
GL GR

]
,

this time with matrices GL ∈ R21×6 and GR ∈ R21×4.

Given the rank 6 of G and resorting to the left pseudo

inverse, we can write

a2

b2

c2

ab

ac

bc

 = −(GL
⊤GL)

−1GL
⊤GR︸ ︷︷ ︸

D∈R6×4


a

b

c

1

 . (20)

To find our solution we adapt the E3Q3 method devel-

oped by Kukelova et al. in [22]. We pick rows 2, 3 and 6

and treat a as a constant. Doing so, allows us to write

Eq. (20) as:b2c2
bc

 =

d22 d23 d21a+ d24
d32 d33 d31a+ d34
d62 d63 d61a+ d64

bc
1

 . (21)

After applying the identities (b2)c = (bc)b, (c2)b = (bc)c

and (b2)(c2) = (bc)(bc), followed by double substitution

yields the homogeneous systemm
[1]
11(a) m

[1]
12(a) m

[1]
13(a)

m
[1]
21(a) m

[1]
22(a) m

[1]
23(a)

m
[1]
31(a) m

[1]
32(a) m

[2]
33(a)


︸ ︷︷ ︸

M(a)

bc
1

 = 0. (22)

6 Sérgio Agostinho et al.

The subscript [·] denotes the degree of the polynomial

in a. Eq. (22) only has a non-trivial solution if the de-

terminant of M(a) is 0. This amounts to finding the

roots of a 4th degree polynomial, yielding our 4 desired

solutions. Recovering b and c amounts to substituting

a in Eq. (22) for every solution and solving the overde-

termined linear system for b and c. As the reader might

notice, our particular selection of coefficients ((b, c), a)

in Eq. (21) or rows in Eqs. (20) is not unique. The same

procedure can be done with a different row and coeffi-

cient selection.

6 Certificate of a Global Optimal Solution

This section exploits known results of duality theory

in establishing lower bounds for an optimization prob-

lem. For an introduction to duality we recommend Boyd

and Vanderberg [3, Sec. 5]. An in-depth explanation of

the technique used in this section can be found in [3,

Sec. 5.5.1]. Let us denote by p∗ and p∗SDP the opti-

mal values of the primal problem’s cost function and

its relaxation, and by d∗ the optimal dual of the re-

laxation. The problem solved in Eq. (9) is a relaxation

fulfilling p∗SDP ≤ p∗. This is a convex problem in which

strong duality holds, as noted by Briales et al. [8] for

a similar problem, and the following condition is veri-

fied d∗ = p∗SDP ≤ p∗. If the relaxation is indeed tight,

this implies d∗ = p∗SDP = p∗. When such condition is

verified, we a have a certificate that the solution found

is a global optimum of the original problem. To solve

problem (9), we resort to the off-the-shelf solver SCS

[29], that besides computing an optimal solution Z, also

provides the dual objective d∗. After retrieving all ro-

tations as detailed in Section 5, we can compute p by

substituting r back in Eq. (7a). If d∗ = p, this implies

p = p∗, since d∗ ≤ p∗ ≤ p. We consider valid solutions,

ones that verify |d∗ − p| < ϵ ≈ 10−9.

7 Experimental Results

We present separate results for the angular and transla-

tions errors when solving the PnPL problem. The error

metrics used are given by

∆R = R̂
⊤
Rgt, (23)

∆t =
∥t̂−tgt∥
∥tgt∥ , (24)

for rotation and translation errors, respectively, with

the subscript gt denoting the ground truth. Given the

residual rotation ∆R, the angular error is retrieved from

the absolute value of the angle, once ∆R is converted

to its axis-angle representation. The translation error

Table 1: Average runtime in milliseconds of each

method over the benchmark performed in Figure 2.

These metrics were acquired on an Intel® Xeon® CPU

E5-2697 v4 @ 2.30GHz × 16 logical cores. The keyword

baseline refers to our baseline method, which enforces

orthonormality of both rows and columns. The key-

word stripped refers to the modification of the baseline

method in which the orthonormality of rows constraint

was discarded.

Method PnP PnL PnPL

baseline 18ms 24ms 22ms
stripped 23ms 33ms 30ms

is computed in normalized form, to prevent that situ-

ations where the object’s origin tgt is located far away

from the camera origin, dominate the translation error

statistics.

7.1 Synthetic Data Evaluation

We generate a simulation environment where we instan-

tiate the necessary numbers of points and lines to test

each configuration. To define a 3D line, we parameter-

ize it as a tuple of two points. All these points are ran-

domly generated inside an origin centered, axis aligned,

3D cube of edge size 0.6, which represents the model’s

frame of reference. We then apply a random 3D trans-

formation which guarantees that the origin of the model

will lie somewhere in [−0.5, 0.5]× [−0.5, 0.5]× [0.4, 2.0].

To project the point onto the image plane, we adopt the

same camera intrinsics as the Kinect v1. Ultimately,

we are trying to replicate similar conditions to those

present in the LINEMOD dataset [17], that contains

scenes targeting object pose estimation tasks. We apply

Gaussian noise of various levels to the projected pixels

to simulate noise in the camera. With every single run,

we instantiate new random elements, a new random

pose and apply random pixel noise to the projections.

We then submit all methods to the same realization to

ensure that we have a direct comparison in every single

run. This ensures that even if a specific realization is

degenerate or simply challenging, all methods are sub-

jected to it.

Inclusion of the Redundant Orthonormality Constraint.

The inclusion of both orthonormality of rows and columns

constraints is theoretically redundant in our problem

formulation. However, experimental evaluation whose

results are displayed in Figure 2 shows that including

both constraints helps achieve more precise estimates

CvxPnPL 7

4 6 8 10 12
Points

0.0

0.5

1.0

1.5

2.0

2.5
An

gu
la

r E
rro

r (
°)

4 6 8 10 12
Points

0.0%

0.2%

0.5%

0.8%

1.0%

1.2%

1.5%

Tr
an

sla
tio

n
Er

ro
r (

%
)

baseline, =0
baseline, =1
baseline, =2

stripped, =0
stripped, =1
stripped, =2

4 6 8 10 12
Lines

0

1

2

3

4

An
gu

la
r E

rro
r (

°)

4 6 8 10 12
Lines

0.0%

1.0%

2.0%

3.0%

4.0%
Tr

an
sla

tio
n

Er
ro

r (
%

)

baseline, =0
baseline, =1
baseline, =2

stripped, =0
stripped, =1
stripped, =2

4 6 8 10 12
Points and Lines

0

1

2

3

4

An
gu

la
r E

rro
r (

°)

4 6 8 10 12
Points and Lines

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

Tr
an

sla
tio

n
Er

ro
r (

%
)

baseline, =0
baseline, =1
baseline, =2

stripped, =0
stripped, =1
stripped, =2

Fig. 2: Comparison between including both row and column orthonormality constraints (baseline) or only the

former (stripped) for a PnP scenario with 4+ points (top), PnL scenario with 4+ lines (middle) and a PnPL

scenario with 4+ points and lines (bottom). The median angular and translation errors are shown on the left and

right, respectively, for different numbers of elements in the scenario, employing Gaussian pixel noise with standard

deviation σ computed over 104 runs.

8 Sérgio Agostinho et al.

with few points and lines, when noise is present. Fur-

thermore, in Table 1 we observe that adding the redun-

dant constraints helps the SDP solver converging to a

solution faster. This also suggests that the poorer esti-

mate precision without the additional constraint might

be explained by early stopping occurrences caused from

reaching the maximum number of iterations allowed,

a parameter set to 2500 iterations in this benchmark.

The results also validate that working with point corre-

spondences constrains the problem further, resulting in

higher convergence speed in comparison with line cor-

respondences.

Justifying the SDP Inclusion. Looking at Eq. (7a), one

might wonder if there is an actual need to formulate

the problem as a SDP in order to extract a valid rota-

tion. After all, the optimal rotation r needs to lie in the

null space of A. While that is true for noiseless cases,

in the presence of noise, the null space collapses. One

might still argue that the right singular vector associ-

ated with the smallest singular value of A should still

provide a reasonable solution, once reshaped and pro-

jected to the orthogonal matrix space. In Figure 3 we

compare the results between both approaches. For sim-

plicity, we only consider non-ambiguous cases where the

null space of A has a dimensionality of 1. It is clear from

the figure that the advantage of the SDP formulation

stands out under noisy conditions.

Scalability with the Number of Correspondences. Linear

scalability with the number of correspondences is one of

the golden standards for perspective-n-points/lines al-

gorithms. The cost matrix Q0 ∈ R10×10 irrespective of

the number of correspondences. Even though comput-

ing Q0 involves a number of operations that scale with

the number of correspondences, these tend to be negli-

gible in the global execution time for the usual amount

of points involved in typical PnP/L scenarios. Our ex-

periments in Figure 4, in scenarios with an increasing

number of points, show exactly that. Up to roughly 100

points, the SDP solver dominates the execution time.

Fewer points render the problem more challenging to

optimize and convergence to a minimum is slower. As

the the number of points increases, the problem be-

comes geometrically more constrained and the solver is

quicker to reach the solution. After a certain stage, the

remaining numerical operations start dominating the

execution time and the linear scaling becomes notice-

able.

Rank of Z. The rank of the solution matrix Z, dictates

the subsequent procedure that is applied in order to

retrieve an optimal rotation. In Figures 5 and 6, we

display the values estimated for rank(Z) in the synthetic

PnP, PnL and PnPL scenarios with 4+ points and/or

lines. Assuming λk denotes the k-th eigenvalue of Z,

with k = 1, . . . , 10, the rank(Z) =
∑10

k=1 1λk>τ (λk),

where 1A(x) is the indicator function of set A such

that

1A(x) =

{
1 if x ∈ A
0 otherwise.

(25)

For these experiments, the threshold is set to the value

τ = 10−3. The important difference between both fig-

ures is the maximum number of allowed iterations for

the convex solver: 2500 in the former case and 2500000

in the latter. Apart from this experiment, we set the

maximum number of iteration to 2500 in all other ex-

periments. Because 4+ points and/or lines is in general

a non-minimal configuration, the mode is rank(Z) = 1.

It is also evident from both figures, that increasing the

number of iterations allows the solver to further reduce

the solution rank. We can also observe that as the num-

ber of points and/or lines increases, these constraint the

problem better and lower the ceiling for the number of

iterations required. Finally, Figure 5 also suggests that

while our method benefits from accurate estimation of

rank(Z), this is not critical for its success. As long as

the rank estimate is above or equal to its actual value,

we are still able to retrieve the desired pose solution.

We present some additional results supporting this ob-

servation in Appendix F.

Comparison with Other Methods. We compare our method

with a number of other available approaches in the sce-

nario of 4+ points, 4+ lines and the combination of 4+

points and lines. We evaluate all methods for different
levels of Gaussian pixel noise and number of elements

in the scene. We benchmark against Vakhitov et al.

[40] who developed EPnPL and OPnPL as extensions

of the original EPnP [23] and OPnP [46], to support

mixed combinations of points and lines. For points-

only scenarios, the existing number of PnP methods

in the literature is considerable, so we opted to focus

on the more popular ones such as EPnP, UPnP [20]

and OPnP.3 For the lines-only scenarios, we compare

against Mirzaei and Roumeliotis [27], RPnL [45], EP-

nPL and OPnPL.4 Finally, for the mixed scenarios we

only compare directly with EPnPL and OPnPL. The

condensed results for all these scenarios are displayed

in Fig. 7. We can verify that our method achieves results

in line with the most precise state of the art methods.

3 EPnP implementation from OpenCV [6], UPnP imple-
mentation from OpenGV [19] and OPnP implementation
from Vakhitov et al. [40].
4 All PnL implementations are available from Vakhitov et

al. [40].

CvxPnPL 9

8 10 12 14 16
Points

0

1

2

3

4
An

gu
la

r E
rro

r (
°)

8 10 12 14 16
Points

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

Tr
an

sla
tio

n
Er

ro
r (

%
)

baseline, =0
baseline, =1
baseline, =2

null, =0
null, =1
null, =2

Fig. 3: Comparison between cvxpnpl (baseline) and null space search strategy described in Section 7.1 (null)

for a PnP scenario with 8+ points. The median angular and translation errors are shown on the left and right,

respectively, for different numbers of elements in the scenario, employing Gaussian pixel noise with standard

deviation σ computed over 10000 runs.

4 5 6 7 8 9 10
Points

8

10

12

14

Ru
nt

im
e

(m
s)

0 2000 4000 6000 8000 10000
Points

6

8

10

12

Ru
nt

im
e

(m
s)

Fig. 4: Median runtime performance in ms for two PnP scenarios with increasing number of points, over 104 runs.

7.2 Real Data Evaluation

To test with real data we opted to establish ground

truth 2D-3D correspondences, following the strategy

employed in [5] to infer for each pixel belonging to an

object, its normalized 3D object coordinate. The un-

normalized coordinate of the pixel in the 3D object is

recovered from the lengths of the 3D bounding box di-

mensions of the object. By leveraging popular object

pose estimation datasets, we have access to real objects

CAD models and images of these objects under known

3D poses. With both these elements we can accurately

extract dense 2D-3D correspondences in each image. In

order to only select meaningful points and lines from

the image, we use SIFT [25] and LSD [41] to gener-

ate point and line-segment proposals. These are respec-

tively pruned and trimmed in order to only consider

proposals lying inside valid object masks. We evalu-

ated all methods in all sequences from the LINEMOD

dataset [17], including the richly annotated benchvise

sequence created in Brachmann et al. [5], coined as the

Occlusion dataset.

In Table 2 we present a quantitative comparison of

all methods over all sequences employing points, lines

or both. Whenever points are used, OPnP and OP-

nPL achieve the best results. However, contrary to the

10 Sérgio Agostinho et al.

4 6 8 10 12
Points

1

2

3

4
Ra

nk

rank(Z) for =0.0

4 6 8 10 12
Points

1

2

3

4

Ra
nk

rank(Z) for =2.0

100

101

102

103

Nr
. o

f R
un

s

100

101

102

103

Nr
. o

f R
un

s

4 6 8 10 12
Lines

1

2

3

4

Ra
nk

rank(Z) for =0.0

4 6 8 10 12
Lines

1

2

3

4

Ra
nk

rank(Z) for =2.0

100

101

102

103
Nr

. o
f R

un
s

100

101

102

103

Nr
. o

f R
un

s

4 6 8 10 12
Points and Lines

1

2

3

4

Ra
nk

rank(Z) for =0.0

4 6 8 10 12
Points and Lines

1

2

3

4

Ra
nk

rank(Z) for =2.0

100

101

102

103

Nr
. o

f R
un

s

100

101

102

103

Nr
. o

f R
un

s

Fig. 5: A visual representation of the different values of rank(Z) over 10000 runs for a PnP scenario with 4+ points

(top), PnL scenario with 4+ lines (middle) and a PnPL scenario with 4+ points and lines (bottom), when the

convex solver is allowed a maximum number of 2500 iterations. We display the rank value under noiseless conditions

(left) and with added Gaussian pixel noise with standard deviation σ = 2. The color coding is log-scaled (figure

best seen in colour). The absence of color (white) in some locations, signifies that there were no runs for a given

number of points/lines (horizontal axis) that produced a solution with that rank (vertical axis).

synthetic experiments, when relying only on line seg-

ments, CvxPnPL achieves the lowest pose error in all

sequences. In Figure 8, we show two images in which

we employed the objects’ pose estimates to render their

masks. The poses were estimated resorting to both points

and lines. We also superimpose the point and line detec-

tions used to compute correspondences. We note that

while certain parts of an object contour can be approx-

imated by straight lines, this is usually just a subset

of the contour. To avoid noisy detections, we also dis-

card line segments that span less than 5 pixels that are

outside known object masks.

CvxPnPL 11

Table 2: Median pose error of all methods over a number of sequences. The tags Line and Occl are used to

designate respectively the LINEMOD and Occlusion datasets. The angular error is expressed in degrees (°) and

the translation error is normalized by the ground truth translation vector norm and expressed in parts per thousand

(‰). For a fair comparison, we only consider frames in which all methods produce a pose estimate. (top) Pose

estimated resorting only to points. (middle) Pose estimated resorting only to lines. (bottom) Pose estimated

resorting to both points and lines.

Points CvxPnPL °/‰ EPnP °/‰ OPnP °/‰ UPnP °/‰

Line ape 0.284 / 1.702 0.299 / 1.716 0.260 / 1.631 0.275 / 1.665
Line benchvise 0.091 / 1.280 0.093 / 1.288 0.088 / 1.276 0.090 / 1.279
Line bowl 0.143 / 1.497 0.141 / 1.527 0.134 / 1.461 0.137 / 1.471
Line cam 0.102 / 1.289 0.103 / 1.293 0.095 / 1.274 0.099 / 1.278
Line can 0.103 / 1.306 0.108 / 1.315 0.099 / 1.299 0.102 / 1.301
Line cat 0.133 / 1.377 0.139 / 1.401 0.127 / 1.358 0.129 / 1.369
Line cup 0.181 / 1.570 0.174 / 1.583 0.164 / 1.475 0.165 / 1.482
Line driller 0.106 / 1.368 0.112 / 1.403 0.103 / 1.361 0.107 / 1.362
Line duck 0.261 / 1.701 0.258 / 1.636 0.230 / 1.551 0.241 / 1.580
Line eggbox 0.137 / 1.368 0.138 / 1.371 0.128 / 1.341 0.133 / 1.355
Line glue 0.168 / 1.532 0.182 / 1.554 0.163 / 1.547 0.178 / 1.609
Line holepuncher 0.161 / 1.447 0.158 / 1.447 0.143 / 1.391 0.147 / 1.403
Line iron 0.124 / 1.324 0.128 / 1.352 0.119 / 1.320 0.124 / 1.325
Line lamp 0.098 / 1.328 0.100 / 1.341 0.095 / 1.319 0.097 / 1.325
Line phone 0.134 / 1.370 0.138 / 1.392 0.129 / 1.354 0.132 / 1.381
Occl 0.175 / 1.640 0.178 / 1.654 0.161 / 1.557 0.169 / 1.610
All 0.145 / 1.428 0.148 / 1.443 0.136 / 1.395 0.141 / 1.412

Lines CvxPnPL °/‰ EPnPL °/‰ Mirzaei °/‰ OPnPL °/‰ Pluecker °/‰ RPnL °/‰

Line ape 0.247 / 1.478 0.303 / 1.628 0.797 / 6.057 0.304 / 1.679 2.467 / 243.141 0.855 / 3.026
Line benchvise 0.111 / 1.299 0.128 / 1.368 0.548 / 4.295 0.119 / 1.307 0.516 / 42.638 0.628 / 3.648
Line bowl 0.177 / 1.419 0.250 / 2.307 0.768 / 6.226 0.206 / 1.563 2.262 / 163.411 0.805 / 5.333
Line cam 0.119 / 1.301 0.133 / 1.354 0.522 / 3.685 0.125 / 1.344 0.583 / 58.059 0.767 / 2.814
Line can 0.105 / 1.287 0.116 / 1.317 0.449 / 3.327 0.109 / 1.288 0.442 / 39.037 0.569 / 2.205
Line cat 0.150 / 1.404 0.175 / 1.572 0.612 / 5.742 0.159 / 1.457 0.810 / 120.878 0.647 / 4.320
Line cup 0.209 / 1.460 0.261 / 1.775 0.559 / 5.064 0.221 / 1.713 2.894 / 232.480 0.755 / 4.501
Line driller 0.119 / 1.349 0.163 / 1.592 0.919 / 5.785 0.131 / 1.488 1.166 / 79.323 0.766 / 7.538
Line duck 0.220 / 1.399 0.240 / 1.545 0.682 / 4.320 0.239 / 1.434 1.220 / 165.782 0.746 / 2.707
Line eggbox 0.141 / 1.322 0.163 / 1.396 0.598 / 3.735 0.149 / 1.357 0.881 / 85.035 0.672 / 3.669
Line glue 0.171 / 1.482 0.282 / 2.051 0.705 / 6.180 0.205 / 1.608 1.958 / 210.189 0.560 / 4.067
Line holepuncher 0.182 / 1.419 0.349 / 1.989 0.796 / 4.736 0.204 / 1.512 4.119 / 254.884 0.950 / 4.552
Line iron 0.125 / 1.316 0.158 / 1.481 0.773 / 4.757 0.136 / 1.340 0.905 / 61.470 0.862 / 3.984
Line lamp 0.101 / 1.339 0.131 / 1.526 0.546 / 5.207 0.107 / 1.375 0.632 / 45.365 0.629 / 7.175
Line phone 0.147 / 1.364 0.211 / 1.612 0.696 / 4.565 0.161 / 1.408 1.166 / 112.223 0.783 / 4.207
Occl 0.184 / 1.592 0.252 / 1.922 0.702 / 12.181 0.198 / 1.704 1.585 / 184.307 0.845 / 4.755
All 0.150 / 1.386 0.191 / 1.592 0.655 / 6.048 0.162 / 1.451 1.058 / 108.239 0.745 / 4.141

Points and Lines CvxPnPL °/‰ DLT °/‰ EPnPL °/‰ OPnPL °/‰

Line ape 0.193 / 1.418 2.681 / 9.329 0.201 / 1.538 0.185 / 1.420
Line benchvise 0.086 / 1.258 0.304 / 1.941 0.088 / 1.277 0.085 / 1.255
Line bowl 0.108 / 1.328 0.883 / 5.896 0.125 / 1.479 0.108 / 1.322
Line cam 0.088 / 1.262 0.520 / 2.417 0.089 / 1.271 0.081 / 1.249
Line can 0.085 / 1.258 0.394 / 2.014 0.088 / 1.273 0.082 / 1.254
Line cat 0.107 / 1.311 0.804 / 3.712 0.114 / 1.347 0.104 / 1.303
Line cup 0.144 / 1.386 1.549 / 9.045 0.142 / 1.419 0.126 / 1.347
Line driller 0.091 / 1.285 0.347 / 2.523 0.109 / 1.363 0.088 / 1.282
Line duck 0.161 / 1.343 1.562 / 5.890 0.170 / 1.408 0.152 / 1.320
Line eggbox 0.104 / 1.284 0.725 / 2.647 0.112 / 1.296 0.098 / 1.276
Line glue 0.126 / 1.382 1.239 / 4.600 0.170 / 1.571 0.130 / 1.411
Line holepuncher 0.124 / 1.339 1.172 / 6.522 0.137 / 1.416 0.118 / 1.322
Line iron 0.098 / 1.277 0.457 / 2.018 0.111 / 1.314 0.098 / 1.276
Line lamp 0.083 / 1.281 0.273 / 2.302 0.089 / 1.323 0.083 / 1.272
Line phone 0.105 / 1.301 0.590 / 2.728 0.119 / 1.346 0.102 / 1.289
Occl 0.143 / 1.494 1.423 / 6.542 0.160 / 1.596 0.135 / 1.441
All 0.115 / 1.324 0.834 / 4.029 0.126 / 1.385 0.111 / 1.314

12 Sérgio Agostinho et al.

4 6 8 10 12
Points

1

2

3

4
Ra

nk

rank(Z) for =0.0

4 6 8 10 12
Points

1

2

3

4

Ra
nk

rank(Z) for =2.0

102

103

104

Nr
. o

f R
un

s

102

103

104

Nr
. o

f R
un

s

4 6 8 10 12
Lines

1

2

3

4

Ra
nk

rank(Z) for =0.0

4 6 8 10 12
Lines

1

2

3

4

Ra
nk

rank(Z) for =2.0

100

101

102

103

104

Nr
. o

f R
un

s

101

102

103

104

Nr
. o

f R
un

s

4 6 8 10 12
Points and Lines

1

2

3

4

Ra
nk

rank(Z) for =0.0

4 6 8 10 12
Points and Lines

1

2

3

4

Ra
nk

rank(Z) for =2.0

103

104

Nr
. o

f R
un

s

103

104

Nr
. o

f R
un

s

Fig. 6: A visual representation of the different values of rank(Z) over 10000 runs for a PnP scenario with 4+ points

(top), PnL scenario with 4+ lines (middle) and a PnPL scenario with 4+ points and lines (bottom), when the

convex solver is allowed a maximum number of 2500000 iterations, a 1000x increase in iterations compared to

Figure 5. We display the rank value under noiseless conditions (left) and with added Gaussian pixel noise with

standard deviation σ = 2. The color coding is log-scaled (figure best seen in colour). The absence of color (white) in

some locations, signifies that there were no runs for a given number of points/lines (horizontal axis) that produced

a solution with that rank (vertical axis).

8 Conclusion

We introduced the first convex approach to the cen-

tral absolute problem from mixed point and line corre-

spondences. We formulated our optimization problem

as a QCQP and relaxed it into a SDP. Through em-

pirical observation, we established that the rank of the

relaxed solution has strong connection to the number

of ambiguous poses in the problem, being equal in most

situations. We then derived approaches for retrieving all

poses in situations up to rank 4. We showed that our

method is competitive with the best state-of-the-art al-

gorithms under synthetic conditions and qualitatively

validated its performance on a real dataset.

CvxPnPL 13

4 6 8 10 12
Points

0.0

0.5

1.0

1.5

2.0

2.5

3.0
An

gu
la

r E
rro

r (
°)

4 6 8 10 12
Points

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

Tr
an

sla
tio

n
Er

ro
r (

%
)

CvxPnPL, =0
CvxPnPL, =1
CvxPnPL, =2

EPnP, =0
EPnP, =1
EPnP, =2

OPnP, =0
OPnP, =1
OPnP, =2

UPnP, =0
UPnP, =1
UPnP, =2

4 6 8 10 12
Lines

0

1

2

3

4

An
gu

la
r E

rro
r (

°)

4 6 8 10 12
Lines

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%
Tr

an
sla

tio
n

Er
ro

r (
%

)

CvxPnPL, =0
CvxPnPL, =1
CvxPnPL, =2
EPnPL, =0
EPnPL, =1
EPnPL, =2

OPnPL, =0
OPnPL, =1
OPnPL, =2
Mirzaei, =0
Mirzaei, =1
Mirzaei, =2

Plücker, =0
Plücker, =1
Plücker, =2
RPnL, =0
RPnL, =1
RPnL, =2

4 6 8 10 12
Points and Lines

0

1

2

3

4

An
gu

la
r E

rro
r (

°)

4 6 8 10 12
Points and Lines

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

Tr
an

sla
tio

n
Er

ro
r (

%
)

CvxPnPL, =0
CvxPnPL, =1
CvxPnPL, =2

EPnPL, =0
EPnPL, =1
EPnPL, =2

OPnPL, =0
OPnPL, =1
OPnPL, =2

DLT, =0
DLT, =1
DLT, =2

Fig. 7: Comparison between different methods for a PnP scenario with 4+ points (top), PnL scenario with 4+

lines (middle) and a PnPL scenario with 4+ points and lines (bottom). The median angular and translation errors

are shown on the left and right, respectively, for different numbers of elements in the scenario, employing Gaussian

pixel noise with standard deviation σ computed over 10000 runs (figure best seen in colour).

14 Sérgio Agostinho et al.

Fig. 8: Two views from the Occlusion dataset, showing

the ability of our method to handle real scenes. The

key points and lines used as correspondences are repre-

sented in white (figure best seen in colour).

Acknowledgements The authors would like to thank Ja-
copo Cavazza and all present at the Optimization Methods in
Geometric Vision seminar at the 2019 NII Shonan Meetings,
for their suggestions and insightful discussions.

References

1. Abdel-Aziz, Y., Karara, H.: Direct linear transformation
from comparator coordinates into object space coordi-
nates in close-range photogrammetry. In: Proceedings
of the Symposium on Close-Range Photogrammetry, pp.
1–18. ASP (1971)

2. Ansar, A., Daniilidis, K.: Linear pose estimation from
points or lines. IEEE Transactions on Pattern Analysis
and Machine Intelligence 25(5), 578–589 (2003)

3. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex opti-
mization. Cambridge university press (2004)

4. Boyd, S., Parikh, N., Chu, E.: Distributed optimiza-
tion and statistical learning via the alternating direction
method of multipliers. Now Publishers Inc (2011)

5. Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shot-
ton, J., Rother, C.: Learning 6D object pose estimation

using 3D object coordinates. In: European Conference on
Computer Vision (ECCV), pp. 536–551. Springer (2014)

6. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal
of Software Tools (2000)

7. Briales, J., Gonzalez-Jimenez, J.: Convex global 3D reg-
istration with lagrangian duality. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR)
(2017)

8. Briales, J., Kneip, L., Gonzalez-Jimenez, J.: A certifi-
ably globally optimal solution to the non-minimal rela-
tive pose problem. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2018)

9. Carlone, L., Calafiore, G.C., Tommolillo, C., Dellaert, F.:
Planar pose graph optimization: Duality, optimal solu-
tions, and verification. IEEE Transactions on Robotics
32(3), 545–565 (2016)

10. Chen, H.H.: Pose determination from line-to-plane cor-
respondences: Existence condition and closed-form solu-
tions. In: Third International Conference on Computer
Vision, pp. 374–378. IEEE (1990)

11. DeMenthon, D., Davis, L.S.: Exact and approximate so-
lutions of the perspective-three-point problem. IEEE
Transactions on Pattern Analysis & Machine Intelligence
14(11), 1100–1105 (1992)

12. Dhome, M., Richetin, M., Lapreste, J.T., Rives, G.: De-
termination of the attitude of 3D objects from a single
perspective view. IEEE Transactions on Pattern Analysis
and Machine Intelligence 11(12), 1265–1278 (1989)

13. Ferraz, L., Binefa, X., Moreno-Noguer, F.: Very fast solu-
tion to the PnP problem with algebraic outlier rejection.
In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2014)

14. Gao, X.S., Hou, X.R., Tang, J., Cheng, H.F.: Com-
plete solution classification for the perspective-three-
point problem. IEEE Transactions on Pattern Analysis
and Machine Intelligence 25(8), 930–943 (2003)

15. Hartley, R., Zisserman, A.: Multiple view geometry in
computer vision. Cambridge university press (2003)

16. Hesch, J.A., Roumeliotis, S.I.: A direct least-squares
(DLS) method for PnP. In: 2011 International Confer-
ence on Computer Vision, pp. 383–390. IEEE (2011)

17. Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski,
G., Konolige, K., Navab, N.: Model based training, de-
tection and pose estimation of texture-less 3D objects in
heavily cluttered scenes. In: Asian Conference on Com-
puter Vision, pp. 548–562. Springer (2012)

18. Khoo, Y., Kapoor, A.: Non-iterative rigid 2D/3D point-
set registration using semidefinite programming. IEEE
Transactions on Image Processing 25(7), 2956–2970
(2016)

19. Kneip, L., Furgale, P.: Opengv: A unified and general-
ized approach to real-time calibrated geometric vision.
In: 2014 IEEE International Conference on Robotics and
Automation (ICRA). IEEE (2014)

20. Kneip, L., Li, H., Seo, Y.: Upnp: An optimal o (n) solu-
tion to the absolute pose problem with universal appli-
cability. In: European Conference on Computer Vision
(ECCV), pp. 127–142. Springer (2014)

21. Kuang, Y., Astrom, K.: Pose estimation with unknown
focal length using points, directions and lines. In: IEEE
International Conference on Computer Vision (ICCV)
(2013)

22. Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient inter-
section of three quadrics and applications in computer
vision. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2016)

CvxPnPL 15

23. Lepetit, V., Moreno-Noguer, F., Fua, P.: Epnp: An ac-
curate o (n) solution to the pnp problem. International
Journal of Computer Vision 81(2), 155 (2009)

24. Li, S., Xu, C., Xie, M.: A robust o (n) solution to the
perspective-n-point problem. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 34(7), 1444–1450
(2012)

25. Lowe, D.G.: Distinctive image features from scale-
invariant keypoints. International Journal of Computer
Vision 60(2), 91–110 (2004)

26. Marchand, E., Uchiyama, H., Spindler, F.: Pose estima-
tion for augmented reality: a hands-on survey. IEEE
Transactions on Visualization and Computer Graphics
22(12), 2633–2651 (2016)

27. Mirzaei, F.M., Roumeliotis, S.I.: Globally optimal pose
estimation from line correspondences. In: 2011 IEEE In-
ternational Conference on Robotics and Automation, pp.
5581–5588. IEEE (2011)

28. Nesterov, Y., Wolkowicz, H., Ye, Y.: Semidefinite pro-
gramming relaxations of nonconvex quadratic optimiza-
tion. In: Handbook of Semidefinite Programming, pp.
361–419. Springer (2000)

29. O’Donoghue, B., Chu, E., Parikh, N., Boyd, S.: Conic
optimization via operator splitting and homogeneous self-
dual embedding. Journal of Optimization Theory and
Applications 169(3), 1042–1068 (2016). URL http://

stanford.edu/~boyd/papers/scs.html

30. Přibyl, B., Zemč́ık, P., Čad́ık, M.: Camera pose estima-
tion from lines using plücker coordinates. In: British Ma-
chine Vision Conference (2015)

31. Přibyl, B., Zemč́ık, P., Čad́ık, M.: Absolute pose estima-
tion from line correspondences using direct linear trans-
formation. Computer Vision and Image Understanding
161, 130–144 (2017)

32. Ramalingam, S., Bouaziz, S., Sturm, P.: Pose estimation
using both points and lines for geo-localization. In: 2011
IEEE International Conference on Robotics and Automa-
tion, pp. 4716–4723. IEEE (2011)

33. Rosen, D.M., Carlone, L., Bandeira, A.S., Leonard, J.J.:
Se-sync: A certifiably correct algorithm for synchroniza-
tion over the special euclidean group. The International
Journal of Robotics Research 38(2-3), 95–125 (2019)

34. Rosen, D.M., DuHadway, C., Leonard, J.J.: A convex re-
laxation for approximate global optimization in simulta-
neous localization and mapping. In: 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp. 5822–5829. IEEE (2015)

35. Saunderson, J., Parrilo, P.A., Willsky, A.S.: Semidefinite
descriptions of the convex hull of rotation matrices. SIAM
Journal on Optimization 25(3), 1314–1343 (2015)

36. Schacke, K.: On the kronecker product. Master’s thesis,
University of Waterloo (2004)

37. Schweighofer, G., Pinz, A.: Globally optimal o (n) solu-
tion to the pnp problem for general camera models. In:
British Machine Vision Conference, pp. 1–10 (2008)

38. Shor, N.Z.: Quadratic optimization problems. Soviet
Journal of Computer and Systems Sciences 25, 1–11
(1987)

39. Tron, R., Rosen, D.M., Carlone, L.: On the inclusion of
determinant constraints in lagrangian duality for 3d slam.
In: Robotics: Science and Systems (RSS) in the workshop
“The Problem of Mobile Sensors” (2015)

40. Vakhitov, A., Funke, J., Moreno-Noguer, F.: Accurate
and linear time pose estimation from points and lines.
In: European Conference on Computer Vision (ECCV),
pp. 583–599. Springer (2016)

41. Von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall,
G.: Lsd: A fast line segment detector with a false detec-
tion control. IEEE Transactions on Pattern Analysis and
Machine Intelligence 32(4), 722–732 (2010)

42. Xu, C., Zhang, L., Cheng, L., Koch, R.: Pose estimation
from line correspondences: A complete analysis and a se-
ries of solutions. IEEE Transactions on Pattern Analysis
and Machine Intelligence 39(6), 1209–1222 (2017)

43. Yang, H., Carlone, L.: A polynomial-time solution for
robust registration with extreme outlier rates. arXiv
preprint arXiv:1903.08588 (2019)

44. Ye, Y., Todd, M.J., Mizuno, S.: An O(
√
nL)-iteration ho-

mogeneous and self-dual linear programming algorithm.
Mathematics of operations research 19(1), 53–67 (1994)

45. Zhang, L., Xu, C., Lee, K.M., Koch, R.: Robust and ef-
ficient pose estimation from line correspondences. In:
Asian Conference on Computer Vision, pp. 217–230.
Springer (2012)

46. Zheng, Y., Kuang, Y., Sugimoto, S., Åström, K., Oku-
tomi, M.: Revisiting the pnp problem: A fast, general
and optimal solution. In: IEEE International Conference
on Computer Vision (ICCV) (2013)

47. Zhou, L., Yang, Y., Abello, M., Kaess, M.: A robust and
efficient algorithm for the pnl problem using algebraic
distance to approximate the reprojection distance. In:
Proceedings of the Thirty-Third AAAI Conference on Ar-
tificial Intelligence (2019)

48. Zhou, L., Ye, J., Kaess, M.: A Stable Algebraic Camera
Pose Estimation for Minimal Configurations of 2D/3D
Point and Line Correspondences. In: Asian Conference
on Computer Vision (2018)

http://stanford.edu/~boyd/papers/scs.html
http://stanford.edu/~boyd/papers/scs.html

16 Sérgio Agostinho et al.

Appendix A Useful Vectorization Properties

See [36] for an insightful discussion on the following

identities:

vec(AXB) = (B⊤ ⊗ A) vec(X) (26)

tr(A⊤X⊤BY) = vec(X)⊤(A⊗ B) vec(Y), (27)

where the operator⊗ represents the Kronecker product.

Appendix B Geometric Constraints

This section contains the detailed derivations showing

how to compose the equations systems from §3.

B.1 Point Correspondences

Consider bi as the bearing vector associated with the

3D point pi (refer to Figure 1). The transformation

from the model/object space to the camera is param-

eterized by the rotation matrix R and the translation

vector t. The collinearity constraint of a point allows

us to write,

⌊bi⌋× (Rpi + t) = 0, (28)

where ⌊b⌋× is the skew symmetric matrix representa-

tion of the 3D vector b

⌊b⌋× =

 0 −bz by
bz 0 −bx
−by bx 0

 . (29)

We can represent Eq. (28) isolating the vectorized rep-

resentation of R,

r = vec(R), (30)

as

⌊bi⌋× (Rpi + t) = 0 (31)

⌊bi⌋×Rpi + ⌊bi⌋×t = 0 : (distributive prop.) (32)

(p⊤
i ⊗ ⌊bi⌋×)︸ ︷︷ ︸

Cpi

r+ ⌊bi⌋×︸ ︷︷ ︸
Npi

t = 0. : (applying (26)) (33)

Matrices Cpi and Npi are 3 × 9 and 3 × 2, respectively.

Each point correspondence contributes 3 equations and

upon stacking all n points yields,

Cp =

Cp1...
Cpn

 , Np =

Np1...
Npn

 , (34)

which are 3n×9 and 3n×3 sized matrices, respectively.

This ultimately results in the homogeneous system of

equations

Cpr+ Npt = 0. (35)

B.2 Line Correspondences

Consider a 3D line defined by two points, which we

represent by the tuple (lp1j , lp2j). Also consider lnj , the

normal to the plane formed between the 3D line and the

origin of the camera. From the coplanarity constraints

of the line, we have

ln
⊤
j (Rlpij + t) = 0 : i = 1, 2. (36)

and from Eq. (36),

ln
⊤
j (Rlpij + t) = 0 (37)

ln
⊤
j Rlpij + ln

⊤
j t = 0 : (distributive property) (38)

(lp
⊤
ij ⊗ ln

⊤
j)r+ ln

⊤
j t = 0 : (applying (26)) (39)

(lpij ⊗ lnj)︸ ︷︷ ︸
clij

⊤
r+ ln

⊤
j t = 0. : (single out ⊤) (40)

The vector clij ∈ R9. Stacking the contributions from

all m lines yields

Cl =


cl

⊤
11

cl
⊤
21
...

cl
⊤
1m

cl
⊤
2m

 , Nl =


ln

⊤
1

ln
⊤
1
...

ln
⊤
m

ln
⊤
m

 , (41)

which are matrices of size 2m × 9 and 2m × 3, respec-

tively. The full system of equations assumes the form

Clr+ Nlt = 0. (42)

Appendix C The QCQP Reformulation

The reformulation from QCQP problem (7) into its

canonical form (8) is required in order to leverage con-

ventional convex solvers. In the next sections, we ad-

dress this reformulation for each element of the prob-

lem. Out of convenience, we resort to the homogenized

representation of r,

r̃ =

[
r

1

]
, (43)

as it eases bundling all constant and linear terms with

respect to r, into a quadratic form with respect to r̃.

C.1 Cost Function

The cost function is defined by

∥Ar∥2 = (Ar)⊤(Ar) : (∥v∥2 = v⊤v for v ∈ Rn) (44)

= r⊤A⊤Ar : (transpose of product) (45)

= r̃⊤
[
A⊤A 09×1

01×9 0

]
︸ ︷︷ ︸

Q0

r̃. : (replace r for r̃) (46)

CvxPnPL 17

C.2 Orthogonality of Rows

The constraint associated with the orthogonality of

rows provides 6 linearly independent equations,

RR⊤ = I3, (47)

where the matrix I3 represents the identity of size 3×3.

We introduce the unit vector ei ∈ R3, whose component

i is set to 1 and the remainder to 0, as well as the 3× 3

matrix

Eij = eie
⊤
j , (48)

which is composed of a unique element 1 at row i and

column j, while all the remaining ones are 0. Equipped

with these new definitions, we are able to express the

constraint in (47) with respect to each individual com-

ponent. In general, for a given matrix A ∈ R3×3 we have

that:

e⊤i Aej = aij . (49)

Employing the same property we have

e⊤i (RR
⊤ − I3)ej = 0 (50)

e⊤i RR
⊤ej − e⊤i I3ej = 0 : (distributive prop.) (51)

e⊤i RR
⊤ej − δij = 0 : (Kronecker delta) (52)

tr(e⊤i RR
⊤ej)− δij = 0 : (trace of a scalar) (53)

tr(R⊤eje
⊤
i R)− δij = 0 : (trace cyclic prop.) (54)

tr(R⊤EjiR)− δij = 0 : (substitution of Eji) (55)

tr(I3R
⊤EjiR)− δij = 0 : (identity matrix) (56)

r⊤(I3 ⊗ Eji)r− δij = 0 : (applying (27)) (57)

r̃⊤
[
I3 ⊗ Eji 09×1

01×9 −δij

]
︸ ︷︷ ︸

Qrij

r̃ = 0. : (with respect to r̃) (58)

Iterating for all indexes, we compose 6 constraints:

r̃⊤Qrij r̃ = 0 : i = 1, . . . , 3; j = i, . . . , 3. (59)

C.3 Orthogonality of Columns

The derivation is very similar to Sec. C.2. This time we

start from the following constraint:

e⊤i (R
⊤R− I3)ej = 0 (60)

e⊤i R
⊤Rej − e⊤i I3ej = 0 : (distributive prop.) (61)

e⊤i R
⊤Rej − δij = 0 : (Kronecker delta) (62)

tr(e⊤i R
⊤Rej)− δij = 0 : (trace of a scalar) (63)

tr(eje
⊤
i R

⊤R)− δij = 0 : (trace cyclic prop.) (64)

tr(EjiR
⊤R)− δij = 0 : (substitution of Eji) (65)

tr(E⊤ijR
⊤R)− δij = 0 : (transpose Eji) (66)

tr(E⊤ijR
⊤I3R)− δij = 0 : (identity matrix) (67)

r⊤(Eij ⊗ I3)r− δij = 0 : (applying (27)) (68)

r̃⊤
[
Eij ⊗ I3 09×1

01×9 −δij

]
︸ ︷︷ ︸

Qcij

r̃ = 0. : (with respect to r̃) (69)

Iterating for all indexes composes 6 constraints as:

r̃⊤Qcij r̃ = 0 : i = 1, . . . , 3; j = i, . . . , 3. (70)

Appendix D Composing the Linear System of

Quadrics

In § 5 we state that, under minimal configurations, the

solution space of all admissible solutions is given by the

linear decomposition

r =

K−1∑
k=1

α′
kv

′
k + v′

0, (71)

where K is the rank of matrix Z. Consider now the

case K = 4, which is the highest rank we address in

this paper. The three unknowns α′
1, α

′
2 and α′

3 will be

designated by the letters a, b and c and we will drop

the ′ superscript on the vectors for convenience. We

resort to the inverse of the vectorizing operator vec−1

to reformulate Eq. (71). Defining

Vi = vec−1(vi) : i = 0, . . . , 3, (72)

we can rewrite it as

R = aV1 + bV2 + cV3 + V0. (73)

Once more, for R to be valid, it needs to respect the

constraints in Eqs. (7b), (7c) and (7d). In the next sec-

tions we will show how to rewrite this combined set of

21 constraints as a linear system

A
[
a2, b2, c2, ab, ac, bc, a, b, c, 1

]⊤
= 0, (74)

where A is a matrix of size 21× 10.

18 Sérgio Agostinho et al.

D.1 Reformulating the Quadratic System of

Equations as a Linear System with Respect to

Quadratic Terms

One important aspect of this formulation is recogniz-

ing how to convert the quadratic system to its “linear”

form, with respect to quadratic terms. Consider the vec-

tor

v =


a

b

c

1

 , (75)

and the quadratic expression

v⊤Pv = 0, (76)

where P ∈ R4×4. We can reformulate Eq. (76) to its

“linear” form as

P11

P22

P33

P12 + P21

P13 + P31

P23 + P32

P14 + P41

P24 + P42

P34 + P43

P44



⊤ 

a2

b2

c2

ab

ac

bc

a

b

c

1


= 0. (77)

In the next sections we will focus once more on de-

scribing all constraints in their natural quadratic form,

always with the outlook that the previous reformula-

tion can be applied and that each quadratic constraint

will contribute a row in the final linear system in Eq.

(74).

D.2 Orthogonality of Columns

We start by writing Eq. (71) in a more compact linear

form

r = Vq, (78)

where

V =
[
v1 v2 v3 v0

]
(79)

q =


a

b

c

1

 . (80)

The first important step is to define an operation which

allows us to select each column of R. Using the index i

to designate the desired column, we can write

rci = (ei ⊗ I3)
⊤r. (81)

With this mechanism in place, orthogonality of the columns

reads

rc
⊤
i rcj = δij for i = {1, 2, 3}, j = {i, . . . , 3}. (82)

Substituting the appropriate terms

rc
⊤
i rcj − δij = 0 (83)

r⊤(ei ⊗ I3)(ej ⊗ I3)
⊤r− δij = 0 : (sub. (81)) (84)

q⊤V⊤(ei ⊗ I3)(ej ⊗ I3)
⊤Vq− δij = 0 : (sub. (78)) (85)

q⊤V⊤(ei ⊗ I3)(ej ⊗ I3)
⊤Vq (86)

−q⊤
[
03×3 03×1

01×3 δij

]
q = 0. (87)

Considering all indices

Pcij = V⊤(ei ⊗ I3)(ej ⊗ I3)
⊤V−

[
03×3 03×1

01×3 δij

]
(88)

q⊤Pcijq = 0 for i = {1, 2, 3}, j = {i, . . . , 3}, (89)

which contributes 6 equations to the system in Eq. (74).

D.3 Orthogonality of Rows

Similarly to the previous section, we start by defining

a selector operator which allows us to isolate the rows

of R from r. Not surprisingly, we can verify that this

operator can be built by commuting both terms in the

Kronecker product.

rri = (I3 ⊗ ei)
⊤r. (90)

With this operator in place, orthogonality of the rows

reads

rr
⊤
i rrj = δij for i = {1, 2, 3}, j = {i, . . . , 3}. (91)

Substituting the appropriate terms

rr
⊤
i rrj − δij = 0 (92)

r⊤(I3 ⊗ ei)(I3 ⊗ ei)
⊤r− δij = 0 : (sub. (90)) (93)

q⊤V⊤(I3 ⊗ ei)(I3 ⊗ ei)
⊤Vq− δij = 0 : (sub. (78)) (94)

q⊤V⊤(I3 ⊗ ei)(I3 ⊗ ei)
⊤Vq (95)

−q⊤
[
03×3 03×1

01×3 δij

]
q = 0. (96)

Considering all indices

Prij = V⊤(I3 ⊗ ei)(I3 ⊗ ei)
⊤V−

[
03×3 03×1

01×3 δij

]
(97)

q⊤Prijq = 0 for i = {1, 2, 3}, j = {i, . . . , 3}, (98)

which contributes 6 additional equations to the system

in Eq. (74).

CvxPnPL 19

D.4 Determinant - Right Hand Convention

Reusing the column selector operator from Eq. (81), the

right-hand convention specifies that

rci × rcj = rck, (99)

for (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. We resort to

the unit vector el to specify the constraint with respect

to each individual component. We will also exploit the

cross product identity,

a · (b× c) = c · (a× b). (100)

Starting with

e⊤l (rci × rcj − rck) = 0 (101)

e⊤l (rci × rcj)− e⊤l rck = 0 : (dist. prop.)(102)

rc
⊤
j (el × rci)− e⊤l rck = 0 : (using (100))(103)

rc
⊤
j ⌊el⌋×rci − e⊤l rck = 0 : (skew sym.)(104)

r⊤(ej ⊗ I3)⌊el⌋×(ei ⊗ I3)
⊤r (105)

−e⊤l (ek ⊗ I3)
⊤r = 0 : (sub. (81))(106)

q⊤V⊤(ej ⊗ I3)⌊el⌋×(ei ⊗ I3)
⊤Vq (107)

−e⊤l (ek ⊗ I3)
⊤Vq = 0 : (sub. (78))(108)

q⊤V⊤(ej ⊗ I3)⌊el⌋×(ei ⊗ I3)
⊤Vq (109)

−q⊤
[

03×3 03×1

e⊤l (ek ⊗ I3)
⊤ 0

]
q = 0. (110)

Considering all indices, we have

Pdijkl = V⊤(ej ⊗ I3)⌊el⌋×(ei ⊗ I3)
⊤V (111)

−
[

03×3 03×1

e⊤l (ek ⊗ I3)
⊤ 0

]
(112)

q⊤Pdijklq = 0 (113)

with (i, j, k) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, l = {1, 2, 3},
for a total of 9 equations.

Appendix E The Splitting Conic Solver

The Splitting Conic Solver (SCS) [29] makes use of a

first-order method for solving large-scale primal-dual

convex cone programs. The method relies on the Alter-

nating Direction Method of Multipliers (ADMM) [4] to

solve the homogeneous self-dual embedding. The homo-

geneous self-dual embedding [44] is an equivalent fea-

sibility problem to the original primal-dual cone pro-

gram, that consists in finding a nonzero point resul-

tant from the the intersection of a cone and an affine

set. At each iteration the solver solves a system of lin-

ear equations and projects a point onto the cone. The

solver returns solutions to the primal and dual prob-

lems, that we leverage to certify the optimality of the

Table 3: Experiment demonstrating the insensitivity of

CvxPnPL to different rank thresholds for a (top) PnP,

a (middle) PnL and a (bottom) PnPL scenario with

4+ points or lines. The median angular and translation

errors are shown in each table cell on the left and right,

respectively, for different numbers of elements in the

scenario, employing Gaussian pixel noise with standard

deviation σ computed over 104 runs. This is a similar

experimental setup to Section 7.1, with the threshold

of 0.001 corresponding to our baseline.

Perspective-n-Points
Noise Nr. of thr=0.001 thr=1e-06 thr=1e-09 thr=1e-12
σ Points rot/tr (°/%) rot/tr (°/%) rot/tr (°/%) rot/tr (°/%)

0.0 4 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
6 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
8 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
10 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
12 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000

2.0 4 1.727 / 1.080 1.751 / 1.086 1.765 / 1.092 1.761 / 1.085
6 1.099 / 0.638 1.102 / 0.641 1.103 / 0.641 1.100 / 0.639
8 0.849 / 0.515 0.849 / 0.516 0.849 / 0.516 0.849 / 0.515
10 0.735 / 0.448 0.735 / 0.448 0.735 / 0.448 0.735 / 0.448
12 0.653 / 0.398 0.654 / 0.398 0.654 / 0.398 0.652 / 0.398

Perspective-n-Lines
Noise Nr. of thr=0.001 thr=1e-06 thr=1e-09 thr=1e-12
σ Lines rot/tr (°/%) rot/tr (°/%) rot/tr (°/%) rot/tr (°/%)

0.0 4 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
6 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
8 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
10 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
12 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000

2.0 4 2.166 / 2.253 2.201 / 2.302 2.210 / 2.288 2.211 / 2.254
6 1.164 / 1.032 1.177 / 1.038 1.183 / 1.044 1.182 / 1.038
8 0.877 / 0.769 0.883 / 0.772 0.885 / 0.774 0.885 / 0.772
10 0.756 / 0.651 0.760 / 0.654 0.760 / 0.655 0.760 / 0.654
12 0.657 / 0.557 0.658 / 0.558 0.658 / 0.559 0.659 / 0.558

Perspective-n-Point-and-Lines
Noise Pts. or thr=0.001 thr=1e-06 thr=1e-09 thr=1e-12
σ Lines rot/tr (°/%) rot/tr (°/%) rot/tr (°/%) rot/tr (°/%)

0.0 4 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
6 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
8 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
10 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
12 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000

2.0 4 2.056 / 1.526 2.079 / 1.527 2.105 / 1.546 2.103 / 1.533
6 1.122 / 0.798 1.130 / 0.808 1.131 / 0.810 1.130 / 0.806
8 0.880 / 0.619 0.882 / 0.621 0.882 / 0.623 0.882 / 0.622
10 0.746 / 0.523 0.747 / 0.524 0.747 / 0.524 0.748 / 0.524
12 0.658 / 0.463 0.659 / 0.463 0.659 / 0.463 0.658 / 0.463

solutions returned by CvxPnPL. When not available,

it alternatively provides a certificate of infeasibility or

unboundedness. The method is particularly suited for

large-scale problems where interior point methods are

too slow.

Appendix F Rank Threshold Selection

Criterion and Sensitivity

In this section, we provide some additional results sup-

porting our statement on CvxPnPL not requiring ac-

curate rank estimates, that are dependent on the rank

threshold. This threshold is used decide whether a given

eigenvalue counts towards the rank of Z. CvxPnPL is

able to gracefully handle rank overestimates as is shown

20 Sérgio Agostinho et al.

1 2 3 4 5 6 7 8 9 10
Eigenvalues of Z (ascending)

10 12

10 10

10 8

10 6

10 4

10 2

100

P3P

1 2 3 4 5 6 7 8 9 10
Eigenvalues of Z (ascending)

10 10

10 8

10 6

10 4

10 2

100

P3L

1 2 3 4 5 6 7 8 9 10
Eigenvalues of Z (ascending)

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

P8P

1 2 3 4 5 6 7 8 9 10
Eigenvalues of Z (ascending)

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

P8L

Fig. 9: Distribution of the ten eigenvalues of Z for minimal (P3L and P3L) and non-minimal (P8P and P8L)

scenarios under noiseless conditions, over 1000 runs. The red horizontal line represents the rank threshold used of

0.001. The box upper and lower bounds plus the orange line, mark the three quartiles of the distribution, and the

whiskers mark the 5th and 95th percentiles.

in Table 3. However, by setting an extremely low rank

threshold, one is throwing away the reduced compu-

tational benefit from handling lower rank cases. We

picked the rank threshold of 0.001 supported by nu-

merical experiments similar to the setuo in Section 7.1,

but using minimal and non-minimal PnP and PnL sce-

narios. As show in Figure 9, minimal scenarios with

3 points or lines have multiple solutions and produce

higher eigenvalues for Z, while for non-minimal scenar-

ios, e.g. 8 points or lines scenarios, there’s a single valid

solution and lower eigenvalues. CvxPnPL can only han-

dle situations up to rank 4 so the threshold is set to en-

sure that the 4 largest “non-null” eigenvalues are com-

fortably above it.

	Introduction
	Related Work
	A Unified Formulation for Point and Line Correspondences
	Convex Formulation
	Rotation Recovery
	Certificate of a Global Optimal Solution
	Experimental Results
	Conclusion
	Useful Vectorization Properties
	Geometric Constraints
	The QCQP Reformulation
	Composing the Linear System of Quadrics
	The Splitting Conic Solver
	Rank Threshold Selection Criterion and Sensitivity

